МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, КУЛЬТУРЫ И СПОРТА РА ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ УНИВЕРСИТЕТ

Составлена в соответствии с федеральными Государственными требованиями к структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) Проректор по науке
П.С. Аветисян
2024г.

Институт: Биомедицины и фармации

Кафедра: Медицинской биохимии и биотехнологии

Учебная программа подготовки аспиранта и соискателя ДИСЦИПЛИНА: 2.1.8.2

Введение в инфоромационную биологию

наименование дисциплины (модуля) по учебному плану подготовки аспиранта

1.5.12 -Illude Зоология, паразитология, экология

наименование научной специальности

Программа одобрена на заседании кафедры

протокол № 8 от 31 05 2024 г.

Утверждена Ученым Советом ИБМиФ

протокол № Пот 11. Ов 2024 г.

Н.О.Ф. ученая степень, часы

Заведующий кафедрой

в.б.н., доцент Оганесян А.А.

THE ST SQUARES AND MISSISS

к.б.н., доцент Оганесян А.А.

И.О.Ф, ученая степень, звание

Разработчик программы

Общие положения

Настоящая рабочая программа обязательной дисциплины (модуля) «Введение в информационную биологию» образовательной программы послевузовского профессионального образования (ООП ППО) предназначена для ознакомления аспирантов с современными представлениями о предмете и основных концепциях информационной биологии, объектов изучения информационной биологии, методах и алгоритмах получения, представления и анализа данных в информационной биологии.

1. Цели изучения дисциплины (модуля)

Целью изучения дисциплины «Введение в информационную биологию» является получение аспирантами основополагающих сведений о содержании и возможностях информационной биологии (биоинформатики), возможностях приложения методов информационной биологии, в том числе, теоретического анализа и компьютерного моделирования, к решению фундаментальных и прикладных проблем молекулярной биологии, молекулярной генетики, клеточной биологии, физиологии, биофизики, общей биологии, биомедицины, фармакологии, экологии и задач, возникающих на стыке этих наук с математикой, информатикой и физикой.

Место дисциплины в структуре основной профессиональной образовательной программы послевузовского профессионального образования (аспирантура) Дисциплина является специальной дисциплиной по выбору в вариативной части учебного плана 1.5.12 (9.00.08) Зоология, паразитология, экология, 1.5.4 (9.00.04) Биохимия.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

Аспирант должен

- **-Знать:** основополагающие концепции биоинформатики и круг основных задач, которые решаются в рамках биоинформатики; способы получения, организации и анализа данных;
- **-Уметь:** использовать основные подходы и методы биоинформатики для решения конкретных научно-исследовательских задач.
- **-Владеть:** способность и заинтересованность использования в практической деятельности знаний законов, закономерностей и категорий биологии;

3. Объем дисциплины (модуля) и количество учебных часов

Вид учебной работы	Кол-во зачетных единиц*/уч.часов
Аудиторные занятия	0,6зет/26ч.
Лекции (минимальный объем теоретических знаний)	8ч.
Семинар	18ч.
Практические занятия	
Другие виды учебной работы (авторский курс, учитывающий результаты исследований научных школ Университета, в т.ч. региональных)	
Формы текущего контроля успеваемости аспирантов	Устный опрос
Внеаудиторные занятия:	
Самостоятельная работа аспиранта	0,4зет/10ч.
ИТОГО	
Вид итогового контроля	Составляющая экзамена кандидатского минимума зачет

4. Содержание дисциплины (модуля)

4.1 Содержание лекционных занятий

No	Содаржанна	Кол-во
Π/Π	Содержание	уч.часов
1	Предмет, задачи и объекты биоинформатики	2
2	Иерархия и эволюция регуляторных молекулярно-генетических систем	2
3	Проблемы компьютерного анализа и моделирования регуляторных генетических систем	2
4	Генные сети	2
	Всего:	8

4.2 Практические занятия

Практические занятия не предусмотрены учебным планом

4.3 Другие виды учебной работы

Другие виды учебной работы не предусмотрены учебным планом.

4.4 Самостоятельная работа аспиранта

No	Виды самостоятельной работы	Кол-во
Π/Π		уч.часов
1	повторение лекционного материала	10
Всего:		10

5 Перечень контрольных мероприятий и вопросы к экзаменам кандидатского минимума

Перечень вопросов к экзаменам кандидатского минимума:

Каким открытиям и достижениям в молекулярной биологии и генетике обязана своим возникновением информационной биология? Привести характеристики генома человека. Назвать информационные технологии, находящие применение в биоинформатике.

Три уровня организации биологических систем ((i) молекулярно-генетический, (ii) организменный, (iii) популяционный и экосистемный) — предмет исследований информационной биологии. Перечислить основные задачи информационной биологии. молекулярно-информационные основы функционирования генетических

самовоспроизводящихся систем.

Биологические макромолекулы (ДНК, РНК, белки), фундаментальные генетические процессы (репликация, транскрипция, трансляция), генетические сети как объекты исследований информационной биологии.

Общие понятия о методах получения молекулярно-генетических данных (расшифровки пространственной структуры белков; расшифровки (чтения) аминокислотных и нуклеотидных последовательностей; генетической инженерии, трансгенеза, клонирования; технологии ДНК-чипов).

Определение биологических самовоспроизводящихся систем; типы и свойства биологических самовоспроизводящихся систем. Информационные потоки в таких системах. Технологии компьютерного моделирования биологических систем.

Характерные свойства генетических систем. Концепция каталитического гиперцикла М.Эйгена. Рибозимы - новый класс природных молекул РНК. Их роль в возникновении жизни. Селекс-методы для моделирования процессов молекулярной эволюции и получения молекулярных продуктов с заданными свойствами.

Источники изменчивости генетической информации. Эпигенетическая наследственность. Стратегии адаптации генетических систем к условиям внешней среды.

Молекулярная эволюция геномов. Использование метода нуклеотидных замен для датировки событий молекулярной эволюции. Нейтральные мутации и теория Кимуры.

Правило Холдейна. Сравнительные характеристики белков транскрипционной и трансляционной машин. Роль дупликаций в эволюции геномов. Горизонтальный перенос генетической информации и его роль в ранней эволюции геномов.

Типы регуляторных контуров самовоспроизводящихся систем и закономерности их эволюции. Основные классы мутаций (повреждающие, нейтральные, адаптивные), их фиксация в популяциях. Компенсаторный эффект отрицательных обратных связей. Отрицательные обратные связи — имманентная причина вырождения самовоспроизводящихся систем. Последствия мутаций для биологических систем с иерархическим управлением. Дестабилизирующий отбор.

Определение генной сети и ее обязательных компонентов. Классы элементарных структур и событий, значимых для функционирования генных сетей. Типы процессов, контролируемых генными сетями. Основные элементы гипотетических генных сетей. Правила описания динамики функционирования генных сетей.

6 Образовательные технологии

В процессе обучения применяются следующие образовательные технологии:

- 1. Сопровождение лекций показом визуального материала.
- 2. Сопровождение лабораторных работ показом фильма с использованием учебнометодического программного комплекса.

7 Учебно-методическое и информационное обеспечение дисциплины (модуля)

Учебная, учебно-методическая и иные библиотечно - информационные ресурсы обеспечивают учебный процесс и гарантирует возможность качественного освоения аспирантом образовательной программы. Кафедра располагает обширной библиотекой, включающей научно-техническую литературу по биологии, научные журналы и труды конференций.

7.1.7.2. Список основной и дополнительной литературы

- 1. Mount D.W. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press 2001.
- 2. Bioinformatics of genome regulation and structure. Ed. by N.Kolchanov and R. Hofestaedt, Kluwer Academic Publishers, Boston/Dordrecht/London, 2004.

- 3. Philip E. Bourne, Helge Weissig. Structural Bioinformatics. Wiley-Liss, 2003
- 4. Baxevanis A.D., B. F. Francis Oulette. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Second Edition. Wiley-Interscience, 2001.

7.3. Интернет-ресурсы

http://www.bionet.nsc.ru/chair/cib/.

8 Материально-техническое обеспечение

Кафедра располагает материально-технической базой, соответствующей действующим санитарно-техническим нормам и обеспечивающей проведение всех видов теоретической и практической подготовки, предусмотренных учебным планом аспиранта, а также эффективное выполнение диссертационной работы.